LITERATURE REVIEWS


This is an interesting paper for several reasons. The most intriguing facet of the present work is the resurrection of the dubious name _N. curtisi_. In the way _N. curtisi_ was first described, it was a straightforward synonym of _N. maxima_, except for the fact that _N. maxima_ is not known from Borneo. The original material of _N. curtisi_ (most probably collected in Celebes but labeled as from Borneo) has rather certainly suffered from label confusion. (The description and the illustration published by Masters leave remarkably little room for speculation.) Anyway, the present authors interpret _N. curtisi_ in such a wide sense that _N. fusca s. lat._ (specimens from northern Borneo, _N. stenophylla_ Mast. _s. str._?) is entirely absorbed into the taxon thus delimited. The rather grave and numerous nomenclatural consequences of this decision (should it be taken seriously) are not even briefly mentioned in the present paper, and no synonyms are given.

Quite correctly, the authors have recognized that the species Danser confused with _N. stenophylla_ (_N. stenophylla_ auct. _non_ Mast.: Danser) cannot be included in the original concept of _N. stenophylla_ Mast. (as defined by Masters’ original description, an illustration of the type specimen published by Masters, and a fragment of doubtlessly pertinent material conserved at Kew). Unfortunately, they overlooked or ignored that _N. fallax_ is the valid and unambiguous name applicable to _N. stenophylla_ auct. _non_ Mast.: Danser. They have instead coined the new (taxonomically synonymous) name _N. sandakanensis_ for it.

Thus, we know for sure now (or we are reminded once again) that there will never be stability in _Nepenthes_ nomenclature if the cases of _N. stenophylla_, _N. fusca_, _N. fallax_, and _N. pilosa_ are not revised with appropriate thoroughness and care. If this is not done, it can be predicted with great confidence that further nomenclatural shindogus will be born in profusion. (JS)


Studies of seedling densities and survival rates in response to various conditions of soil treatment (removal of leaf litter, herbicide application, removal of woody plants) showed that the establishment of _D. capillaris_ is limited in part by the effects of litter on seedling density in both open areas and shrub thickets. It is surprising to find such unsurprising data published in a full paper. (JS)


Obviously in great hurry, the items mentioned in the title are featured to meet the formal requirements of effective publication. While location details are withheld in order to impede the craft of illegal plant collectors, researchers who are not fortunate enough to know where the specimens originate also suffer because of this omitted information. Fortunately, however, both species have actually been discovered previous to the 1998 expedition that yielded the specimens described in this paper, and pictures of them (not mentioned in the present paper) have been posted for several months on the internet. The diagnoses (no descriptions are given but they are promised to appear “shortly” together with illustrations) are so brief that it can only be gathered from them that the new species differ from their supposed
close relatives by lacking their distinctive features (e.g. the separated peristome teeth of *N. villosa* are missing in *N. mira*, and the large glands along the median line of the lid of *N. macrovulgaris* cannot be found in *N. wilkiei*). This would in the worst case leave room for the speculation that they are not even related to the species they are compared with. For more information consult:
The picture labeled “*N. alata* Palawan Island, Philippines” is of *N. wilkiei*, cf. CPN 27: 7, Figure 5, 1998, and
http://www.borneoexotics.com/phil_photos.htm
The picture labeled “*N. sp. #5*” is of *N. mira*. These photographs may also be viewed at the ICPS web site. (JS)


In this research article additional proof is presented for the theory that *R. gorgonias* has carnivorous properties although it lacks digestive enzymes. The ratio of the nitrogen isotope 15N compared to the more abundant isotope N differs consistently between insects, atmospheric nitrogen, nitrogen containing salts in the soil and plant tissues. In previous studies it has been shown that insects have a higher δ 15N ratio than plants, and carnivorous plants have been demonstrated to display higher δ 15N values than non-carnivorous plants. In the present study, adult plants of *R. gorgonias* are stated to have a δ 15N value far higher than juvenile plants of the same species, non-carnivorous reference plants, or even two *Drosera* species. This is taken as indirect evidence for carnivory in *Roridula gorgonias*. The leaves are furthermore demonstrated to exhibit a strong reflexion of UV light, which is thought to be particularly attractive for insects, another feature common in carnivorous plants. (JS)


Why are we writing a literature review of an article about an orchid? It may (emphasize on *may*) be the first-described carnivorous orchid! The authors came across this new, so far monotypic genus while exploring the tepui Cerro Aracamuni in the Venezuelan Guayana. The plant was thus named *Aracamunia liesneri* Carnevali and Ramirez in honor of its location.

The little plant only stands 5-6 cm (2-2.5 inches) tall and grows in a habitat similar to those of carnivorous plants on the tepui. It is placed in the subtribe Spiranthinae which contains, among other genera, the familiar Ladies’ Tresses (*Spiranthes* spp.). The structures that make it suspiciously carnivorous-looking are small, ligulate (tongue-like) structures at the bases of the leaves. These structures have distinctive glandular heads. Unfortunately only a few plants fixed in alcohol have been collected but these will be subjected to microscopic tissue studies to gather further information on the nature of the glands. Of course, if possible, further study on living material would be required to evaluate the possibility of digestion and absorption of prey products, and to attempt to grow the plant *ex situ*. There is some urgency for further study of living material—the species is known only from one tepui and it is subject to illegal mining activities, with habitat damage furthered by trampling by government officials and military attempting to stop the mining! (DES)